In vivo targeting through click chemistry.

نویسندگان

  • Yevgeny Brudno
  • Rajiv M Desai
  • Brian J Kwee
  • Neel S Joshi
  • Michael Aizenberg
  • David J Mooney
چکیده

Targeting small molecules to diseased tissues as therapy or diagnosis is a significant challenge in drug delivery. Drug-eluting devices implanted during invasive surgery allow the controlled presentation of drugs at the disease site, but cannot be modified once the surgery is complete. We demonstrate that bioorthogonal click chemistry can be used to target circulating small molecules to hydrogels resident intramuscularly in diseased tissues. We also demonstrate that small molecules can be repeatedly targeted to the diseased area over the course of at least one month. Finally, two bioorthogonal reactions were used to segregate two small molecules injected as a mixture to two separate locations in a mouse disease model. These results demonstrate that click chemistry can be used for pharmacological drug delivery, and this concept is expected to have applications in refilling drug depots in cancer therapy, wound healing, and drug-eluting vascular grafts and stents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo tumor cell targeting with "click" nanoparticles.

The in vivo fate of nanomaterials strongly determines their biomedical efficacy. Accordingly, much effort has been invested into the development of library screening methods to select targeting ligands for a diversity of sites in vivo. Still, broad application of chemical and biological screens to the in vivo targeting of nanomaterials requires ligand attachment chemistries that are generalizab...

متن کامل

Improved Tumor Targeting and Longer Retention Time of NIR Fluorescent Probes Using Bioorthogonal Chemistry

The traditional labeling method for targeted NIR fluorescence probes requires directly covalent-bonded conjugation of targeting domains and fluorophores in vitro. Although this strategy works well, it is not sufficient for detecting or treating cancers in vivo, due to steric hindrance effects that relatively large fluorophore molecules exert on the configurations and physiological functions of ...

متن کامل

Cu(I)-assisted click chemistry strategy for conjugation of non-protected cross-bridged macrocyclic chelators to tumour-targeting peptides.

Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry has inherent challenges for copper-labeled radiopharmaceuticals. An azide-modified phosphonate-based cross-bridged macrocyclic chelator was synthesized for click chemistry conjugation with azide-modified Y3-TATE (a somatostatin analogue) on resin, without the need for protecting the chelator. The (64)Cu-labeled bioconjugate ...

متن کامل

In Vivo Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates

Unnatural sugar-mediated metabolic labeling of cancer cells, coupled with efficient Click chemistry, has shown great potential for in vivo imaging and cancer targeting. Thus far, chemical labeling of cancer cells has been limited to the small-sized azido groups, with the large-sized and highly hydrophobic dibenzocyclooctyne (DBCO) being correspondingly used as the targeting ligand. However, sur...

متن کامل

Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ChemMedChem

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2015